
Towards Optimized and Constant-Time CSIDH on Embedded
Devices

Amir Jalali1, Reza Azarderakhsh1, Mehran Mozaffari Kermani2, and David Jao3

Department of Computer and Electrical Engineering and Computer Science
Florida Atlantic University

Department of Computer Science and Engineering, University of South Florida

Department of Combinatorics and Optimization, University of Waterloo

COSADE 2019

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 1 / 14



Quantum Computers

Current public-key cryptography is based on the following hard problems:
RSA: Discrete Logarithm Problem (DLP)
ECC: Elliptic Curve Discrete Logarithm Problem (ECDLP)
Shor’s quantum algorithm can solve these problems in polynomial-time

Post-quantum cryptography is based on hard problems that are hard even on a
quantum computer:

Lattice-based cryptography
Code-based cryptography
Hash-based cryptography
Multivariate cryptography
Isogeny-based cryptography

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 2 / 14



Isogeny-based Cryptography

Isogeny-based cryptography is constructed on a set of curves.
Given two curves E and E′ = φ(E), find φ ?

P
Q

b

b

E

b

E′

φ(P )

b
φ(Q)

φ

φ

φ

Figure: Isogeny maps

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 3 / 14



Isogenies of Elliptic Curves

Isogeny Kernel
Kernel of isogeny φ on a curve E, is a finite subgroup of points on E.

Isogeny
An isogeny φ is a group isomorphism for elliptic curves which has a finite kernel. Given a
finite subgroup G ∈ E1 there is a unique separable isogeny φG : E1 → E2 with kernel G.

The degree of isogeny deg(φ) = #ker(φ).
For instance, if G = {−P,O, P}, then deg(φG) = 3.

Small Degree Isogeny Computation: Vélu’s formula
Input: A generator of the kernel G (e.g., P ) of the small degree isogeny.
Output: The image of E1 (i.e., E2) and the rational map to compute the point images.

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 4 / 14



Towards Constant-time and Efficient CSIDH on Embedded Devices

Recently proposed Diffie-Hellman scheme on commutative group action.
SIDH is defined over E(Fp2)→ Not Commutative!
CSIDH is defined over E(Fp)→ Commutative!
Alice and Bob walk in two different isogeny graphs on the same isogeny class.

Alice Bob

SKA = (eA1, · · · , eAn) SKB = (eB1, · · · , eBn)
[a] = [leA1

1 · · · leAn
n ] [b] = [leB1

1 · · · leBn
n ]

PKA = [a]E0 = EA PKB = [b]E0 = EB
EB←−−
EA−−→

SharedA = [a]EB = [a][b]E0 SharedB = [b]EA = [b][a]E0

Figure: CSIDH key exchange.

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 5 / 14



CSIDH vs. SIDH

CSIDH SIDH
Speed (NIST level 1) 100 ms 10 ms

Public key size 64 bytes 330 bytes
Key compression N/A 196 bytes

Constant-time No Yes
Best quantum attack subexpontential p1/6

Advantages and disadvantages of CSIDH:
Key size is very small.
Fast and straightforward key validation.
Much slower and scales poorly against attacks.

This work: The evaluation of a constant-time CSIDH on embedded devices.

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 6 / 14



Related work

Castryck et al. (ia.cr/2018/383) — original implementation
Meyer and Reith (ia.cr/2018/782) — faster implementation with some
constant-time ideas
Meyer et al. (ia.cr/2018/1198) — claimed constant-time CSIDH
Onuki et al. (ia.cr/2019/353) — claimed (faster) constant-time CSIDH

Is it really constant time?

“Our implementation allows variance the computational time with randomness
that does not relate to secret information. Applying our method to an
implementation based on a stricter definition of constant-time is a future work.”
—Onuki et al.

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 7 / 14

ia.cr/2018/383
ia.cr/2018/782
ia.cr/2018/1198
ia.cr/2019/353


Point Multiplication

Compute [k]P in constant-time to be side-channel attack resistant.
Castryck et al. implementation: Fast, but totally vulnerable to DPA and SPA.
This work: Constant-time variant of the Montgomery ladder:

Algorithm 1: Constant-time variable length scalar multiplication

Input : k =
∑n−1

i=0 ki2
i and x(P ) for P ∈ E(Fp).

Output: (Xk, Zk) ∈ F2
p s.t. (Xk : Zk) = x([k]P ).

1: XR ← XP , ZR ← ZP

2: XQ ← 1, ZQ ← 0
3: for i = n− 2 downto 0 do
4: (Q,R)← cswap(Q,R, (ki xor ki+1))
5: (Q,R)← xDBLADD(Q,R, P )
6: end for
7: (Q,R)← cswap(Q,R, k0)
8: return Q

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 8 / 14



Variable-time Group Action

Algorithm 2: Variable-time secret key decoding (Castryck et al.)
1: for i = 0 to n− 1 do
2: if ei > 0 then
3: ei(0) = ei, ei(1) = 0
4: k(1)← k(1) · `i
5: else if ei < 0 then
6: ei(1) = −ei, ei(0) = 0
7: k(0)← k(0) · `i
8: else
9: ei(0) = 0, ei(1) = 0

10: k(0)← k(0) · `i
11: k(1)← k(1) · `i
12: end if
13: end for

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 9 / 14



Constant-time Group Action

Algorithm 3: Constant-time secret key decoding
1: for i = 0 to n− 1 do
2: Set s← 1 if ei is negative, otherwise s← 0.
3: Set v ← 0 if ei is 0, otherwise v ← 1.
4: ei(s)← ei − (2 · s · ei).
5: ei(s̄)← 0.
6: k(s̄)← `i · k(s̄).
7: k(v̄)← (`i − v · (`i − 1)) · k(v̄).
8: end for

We adopted the same strategy to remove all the conditional statements using mask
operations for the entire group action algorithm
We removed all the while loops and replaced them with constant-time for loops with
constant number of iterations.
Further details on constant-time implementation can be found in our publicly
available library.

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 10 / 14



Implementation Parameters

All the finite field arithmetic are designed and developed using hand-written ARMv8
assembly.
The proposed arithmetic library is also totally constant-time.
Our library is publicly available at:
https://github.com/amirjalali65/armv8-csidh

The executables are benchmarked on real ARMv8-powered cellphones.
Target devices:

Cortex-A57: Huawei Nexus 6P running Android 7.1.1
Cortex-A72: Google Pixel 2 running Android 8.1.0

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 11 / 14

https://github.com/amirjalali65/armv8-csidh


Implementation Results

Table: Constant-time ladder

Constant-time Variable-time
Cortex-A57 Cortex-A72 Cortex-A57 Cortex-A72

Key validation cc ×106 - - 38 23
seconds - - 0.02 0.01

Group action cc ×106 30,459 28,872 624 552
seconds 15.6 12.03 0.32 0.23

Total CSIDH cc ×106 61,054 57,912 1,326 1,224
seconds 31.3 24.1 0.68 0.51

Table: Uniform but variant-time ladder

Operation Cortex-A57 Cortex-A72

Group action 11,286 · 106 cc 10,824 · 106 cc
5.94 s 4.51 s

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 12 / 14



Conclusion and Future Work

We proposed a constant-time implementation of CSIDH on ARMv8 processors.
Our implementation is free of any if or while statement.
We adopted a set of engineering techniques and heuristics to provide a fully
constant-time and optimized implementation of CSIDH.
The performance results using CT Montgomery ladder are very slow.
Further optimization techniques are required to make CSIDH as a secure candidate
for PQC.
We plan to optimize our library further in the near future.

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 13 / 14



Thank You!

Jalali, Azarderakhsh, Mozaffari Kermani, and Jao CT CSIDH COSADE 2019 14 / 14


	Preliminaries
	Isogeny of Supersingular Elliptic Curves
	Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) Key Exchange
	Constant-time Implementation of CSIDH on ARMv8
	Performance Results
	Conclusion and Future Work

