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Context

About me: PhD student, working on Statistical Learning applied to Side
Channel Analysis

& 60 8 =&

Conceives a |, Evaluates | | Delivers a Security | | Commercialises the
component Security Claims Certification certified product

Developer ‘ ITSEF ANSS Developer

French Certification Scheme
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Figure: French certification scheme
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Evaluating Side-Channel Vulnerabilities

Evaluating worst-case scenarios from a developer point of view.

Open samples

» Open samples are admitted for evaluation
» They are used to previously characterize the behaviour of the device =
Profiling Attacks

V.

Profiling: two steps

1. Characterization with statistical tools (SNR, T-Test, x?, ...)
2. Profiling with Generative models: Template Attacks

A
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Evaluating Side-Channel Vulnerabilities

Evaluating worst-case scenarios from a developer point of view.

Open samples

» Open samples are admitted for evaluation
» They are used to previously characterize the behaviour of the device =
Profiling Attacks

V.

Profiling with Deep Learning: two steps

1. Characterization with statistical tools (SNR, T-Test, x?, ...)
2. Profiling with Discriminative models: Convolutional Neural Networks

v
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2. The Neural Networks paradigm
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Notations in Side-Channel Analysis

ASCAD Dataset

Measure trace X

Plaintext P ‘ Secret K o0
o 1 E 350 200 E 00 760

1 1 1 Encryption Sensitive operation

Z=C(P K)

EM Emanation
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Profiling step

Follows Maximum Likelihood principles

Requires to know the probability distribution F* £ Pr[Z|X]

Reality: unknown for the evaluator/attacker. Estimation with parametric
models F(.,0")!

p(z‘xq)F
/\/ Estimator
\N\W F(.;0)

X

0% 20% 40% 60% 80% 100%
mZ=0 mZz=1
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Why Deep learning?
SCA suits the DL framework
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Why Deep learning?
SCA suits the DL framework

» Profiling a target device ~ training a DL model
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Why Deep learning?
SCA suits the DL framework

» Profiling a target device ~ training a DL model
» DL does not require too much prior knowledge (e.g. leakage model)
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Why Deep learning?
SCA suits the DL framework

» Profiling a target device ~ training a DL model
» DL does not require too much prior knowledge (e.g. leakage model)
» DL shown to be robust against some counter-measures
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Why Deep learning?
SCA suits the DL framework

» Profiling a target device ~ training a DL model
» DL does not require too much prior knowledge (e.g. leakage model)
» DL shown to be robust against some counter-measures

New problematics

Deep Learning provides black-box models:

AN

X

pmxzx)—

0% 20% 40% 60% 80% 100%

wZz=0 mz=1
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Why Deep learning?
SCA suits the DL framework

» Profiling a target device ~ training a DL model
» DL does not require too much prior knowledge (e.g. leakage model)
» DL shown to be robust against some counter-measures

New problematics

Deep Learning provides black-box models:

AN

X

bzl X:x)—

0% 20% 40% 60% 80% 100%

wZz=0 mz=1

Lack of posterior knowledge about the learned leakage model: how did the
model learn?

N
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Why Deep learning?

SCA suits the DL framework

» Profiling a target device ~ training a DL model
» DL does not require too much prior knowledge (e.g. leakage model)
» DL shown to be robust against some counter-measures

New problematics

Deep Learning provides black-box models:

AN

X

bzl X:x)—

0% 20% 40% 60% 80% 100%

wZz=0 mz=1

Lack of posterior knowledge about the learned leakage model: how did the
model learn?

Lack of trust on the Deep Learning tools: where did the model get the
information?

N
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Why Deep learning?

SCA suits the DL framework

» Profiling a target device ~ training a DL model
» DL does not require too much prior knowledge (e.g. leakage model)
» DL shown to be robust against some counter-measures

New problematics

Deep Learning provides black-box models:

AN

X

bzl X:x)—

0% 20% 40% 60% 80% 100%

wZz=0 mz=1

Lack of posterior knowledge about the learned leakage model: how did the
model learn?

Lack of trust on the Deep Learning tools: where did the model get the
information? Issue addressed in this talk!

N
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3. Characterization with gradient visualization
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Our Contribution: the Gradient Visualization

» We propose a characterization technique based on a trained CNN
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Our Contribution: the Gradient Visualization

» We propose a characterization technique based on a trained CNN

> Able to detect Points of Interest (Pols) as long as the model has learned
something
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Our Contribution: the Gradient Visualization

» We propose a characterization technique based on a trained CNN

> Able to detect Points of Interest (Pols) as long as the model has learned
something

> Already proposed in Image Recognition [SVZ13; Spr+14]
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Our Contribution: the Gradient Visualization

» We propose a characterization technique based on a trained CNN

> Able to detect Points of Interest (Pols) as long as the model has learned
something

> Already proposed in Image Recognition [SVZ13; Spr+14]
> Starts to be used in SCA [Tim19; HGG19]
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Our Contribution: the Gradient Visualization

» We propose a characterization technique based on a trained CNN

> Able to detect Points of Interest (Pols) as long as the model has learned
something

> Already proposed in Image Recognition [SVZ13; Spr+14]
> Starts to be used in SCA [Tim19; HGG19]

Not at the state of the art in Image Recognition. So why such a choice for Side
Channel Analysis?
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Let us start with an ideal case

Ideal case: we know F* = Pr[Z|X] (i.e. F* : RP — P(Z) c [0,1]"*))

An explanation

> Assume the informative leakage is

very localized (few Pols)
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Let us start with an ideal case

Ideal case: we know F* = Pr[Z|X] (i.e. F* : RP — P(Z) c [0,1]"*))

An example

AN — SNR
\/\/v\/\vw3

CITTTT THTT] s

An explanation

» Assume the informative leakage is
very localized (few Pols)

» Consider a new trace and its label
X, Z
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Let us start with an ideal case

Ideal case: we know F* = Pr[Z|X] (i.e. F* : RP — P(Z) c [0,1]"*))

An explanation

» Assume the informative leakage is
very localized (few Pols)
» 5 non informative:
\ x[to] — X[to] + € not sensitive
> In other words, tp non informative
ax[m] F*(x)[z] = 0

—— SNR

(TTTTT TITT]  scores
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Ideal case: we know F* = Pr[Z|X] (i.e. F* : RP — P(Z) c [0,1]"*))

An explanation

» Assume the informative leakage is
very localized (few Pols)

» ty non informative:
— ace x[to] — x[to] + € not sensitive

» In other words, to non informative
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Let us start with an ideal case

Ideal case: we know F* = Pr[Z|X] (i.e. F* : RP — P(Z) c [0,1]"*))

» Assume the informative leakage is
— very localized (few Pols)
> t; informative: x[t1] — x[t1] + € is
W likely to affect the optimal model’s
Thace decision
EEEE BRI > t; informative
R (8;’[11] F*(x)[z]| > 0
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Let us start with an ideal case

Ideal case: we know F* = Pr[Z|X] (i.e. F* : RP — P(Z) c [0,1]"*))

An example

\ —— SNR
\/@\/\/\Tm

Scores

Consequences

An explanation

» Assume the informative leakage is
very localized (few Pols)

> t; informative: x[t1] — x[t1] + € is
likely to affect the optimal model’s
decision

» t; informative

~ | F )1z)] > 0

If t is a Pol, then it should be seen in the gradients VF*(x)[z]
Q: Why such a choice for Side Channel Analysis?
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What is the link with Deep learning?

We do not know F*, but we can replace it with a Deep Neural Net

Deep Neural Networks

Composition of simple operations (a.k.a layers), alternating between linear (\)
and non-linear (o) layers. Linear layers are parametrized by real values gathered
into a vector 6

Theorem (Universal Approximation [HSW90], informal)

Can we approximate F* with F(.,0") with an arbitrary uniform precision?

v
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What is the link with Deep learning?

We do not know F*, but we can replace it with a Deep Neural Net

Deep Neural Networks

Composition of simple operations (a.k.a layers), alternating between linear (\)

and non-linear (o) layers. Linear layers are parametrized by real values gathered
into a vector 6

Theorem (Universal Approximation [HSW90], informal)

Can we approximate F* with F(.,0") with an arbitrary uniform precision?
Yes

v
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What is the link with Deep learning?

We do not know F*, but we can replace it with a Deep Neural Net

Deep Neural Networks

Composition of simple operations (a.k.a layers), alternating between linear (\)
and non-linear (o) layers. Linear layers are parametrized by real values gathered
into a vector 6

Theorem (Universal Approximation [HSW90], informal)

Can we approximate F* with F(.,0") with an arbitrary uniform precision?
Yes

And what about the derivatives of F*?

v
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What is the link with Deep learning?

We do not know F*, but we can replace it with a Deep Neural Net

Deep Neural Networks

Composition of simple operations (a.k.a layers), alternating between linear (\)
and non-linear (o) layers. Linear layers are parametrized by real values gathered
into a vector 6

Theorem (Universal Approximation [HSW90], informal)

Can we approximate F* with F(.,0") with an arbitrary uniform precision?
Yes

And what about the derivatives of F*?

As well! )
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How to find such an approximator?

/\/\/v\/\p/\/\p | Re

X

Learning ...
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How to find such an approximator?

Machine Learning

Min Loss

/\/\/\/\/\/N\/\ N F(.,6%) with Gradient Descent (SGD)

X 4

Learning 6...consist in minimizing a loss ¢(F(x,0%), z) by applying a Gradient
Descent.
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How to find such an approximator?

Machine Learning

Min Loss

/\/\ /v\/\/\/\/\/\ F.6%) with Gragient Descent (SGD)

X 4

Learning 6...consist in minimizing a loss ¢(F(x,0%), z) by applying a Gradient
Descent.
Vol(F(x,07),z) computed with the backprop algorithm.
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How to find such an approximator?

Machine Learning

Min Loss
with Gradient Descent (SGD)

NV EE

X

Learning 6...consist in minimizing a loss ¢(F(x,0%), z) by applying a Gradient
Descent.

Vol(F(x,07),z) computed with the backprop algorithm.

Side effect: Vyl(F(x,60"), z) is also computed for free !
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How to find such an approximator?

Machine Learning

Min Loss
with Gradient Descent (SGD)

NV EE

X

Learning 6...consist in minimizing a loss ¢(F(x,0%), z) by applying a Gradient
Descent.

Vol(F(x,07),z) computed with the backprop algorithm.

Side effect: Vyl(F(x,60"), z) is also computed for free !

Q: Wait a minute: is that really what we want?
We got V,£(F(x,07),z), we wanted V,F(x,0%)[z].
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How to find such an approximator?

Machine Learning

Min Loss
with Gradient Descent (SGD)

NV EE

X 4

Learning 6...consist in minimizing a loss ¢(F(x,0%), z) by applying a Gradient
Descent.

Vol(F(x,07),z) computed with the backprop algorithm.

Side effect: Vyl(F(x,60"), z) is also computed for free !

Q: Wait a minute: is that really what we want?
We got V,£(F(x,07),z), we wanted V,F(x,0%)[z].
A: Yes !

Both are equivalent.
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Concretely, how to implement this method?
Very straightforward in Pytorch [Noa]:

):
gradient visualization from a trace or
# Enables x tore its gradient during the backprop

.requires_grad_()

With Tensorflow:
tf.abs(tf.gradients(probas[:,Z],
A

# Forward pass

ard pass
.backward()

# Post-prc g of the gradient
.grad.abs()

return
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Application on experimental data

Description

ASCAD dataset [Pro+18]: 50,000 traces, each of 700 points
Corresponds to the first AES round
Three cases studied:

1. No countermeasure: synchronized traces, no masking

2. Artificial random shift

3. Synchronized traces, boolean masking (unknown masks)

| A\

Trained model

CNN with a VGG-like architecture
Grid search of hyperparameters
Best model: minimal trace number when the guessing entropy reaches 2
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First experiment: no countermeasure

Average number of traces to recover the secret key: 3

SNR for Z = SBox(p[3] @ k[3]) @® 7ou
Synchronized traces

. .
0 100 200 300 400 500 600 700
Time (samples)

Figure: SNR

0.06 -

0.05 -

0.04 -

Gradient
=
2

0.02 -

0.01 -

0.00 -

Gradient averaged on a 5-fold cross validation
No masking, no desynchronization

' ' ' ' ' ' '
0 100 200 300 100 500 600 700

Time (samples)

Figure: Gradient Visualization
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Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6

Loss function gradient (average)
No masking, random shift (100)

SNR on ASCAD with random shift (100) 0.006 -
0.00625
0.005 =
0.00600
0.004 =
000575
€
< ]
£ 0.00550 S 0.003 -
S
0.00525
0.002 =
0.00500
0.00475 0.001 -
0 100 200 300 400 500 600 700 0.000 -
Timetsamples)
. . . . ' . . .
0 100 200 300 400 500 600 700

Time (samples)

Figure: No Pol emphasized @
Figure: Band of peaks Q

Friday, April 512019, COSADE, Darmstadt| Loic Masure, Cécile Dumas, Emmanuel Prouff| 18/23



j O Gradient Visualization for General Characterization in =
Ceatech Profiling Attacks Leti

Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6

Loss function gradient
No masking, random shift (100)

SNR on ASCAD with random shift (100)

14 -
0.00625
12 -
0.00600
10 -
0.00575
. 5 0s-
£ 0.00550 -]
e
S 06~
0.00525 06
0.00500 04-
0.00475 02-
0 00 200 300 400 500 600 700 00 -

Timetsamples) . ; ; } ) ; .
0 100 200 300 400 500 600 700
Time (samples)

Figure: No Pol emphasized @
Figure: Characterization for each trace Q
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Third experiment: with masking

Average number of traces to recover the secret key: ~ 100
Signal-to-Noise Ratios

ASCAD database

08 -
Tout
07- — Z&7ou
0.6 -
05 -
% 0a-
&
03 -
02-
0.1 - h
dal A N LJ "
0.0 -
. . . . . . . .
0 100 200 300 400 500 600 700

Time (samples)

Figure: Requires knowledge of the masks ©

Loss function gradient (average)
With masking, no shift

0.0005 -
0.0004 -

§ 00003 -
K
o}
0.0002 -

0.0001 -

0.0000 -

\ , \ \ , , \
0 100 200 300 400 500 600 700
Time (samples)

Figure: No kowledge required @
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Be careful not to overfit !

Loss function gradient (average) Loss function gradient (average)
With masking, no shift With masking, no shift
ooooi-
£ o000 - £ oow0-
5 S oo -
O a0 20 0 4o 0 oo 7o 0 w0 2o a0 a0 0 oo 0
Time (samples) Time (samples)
Figure: GV without overfitting @ Figure: GV with overfitting ©
Accuracy
Training
Validation
Epoch

Figure: Solution: early-stopping
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Conclusions

» We have proposed a new characterization method, simple but promising
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Conclusions

» We have proposed a new characterization method, simple but promising
» Current research topic in characterization

Friday, April 5th2019, COSADE, Darmstadt| Loic Masure, Cécile Dumas, Emmanuel Prouff| 21/23
=



Gradient Visualization for General Characterization in

Profiling Attacks Leti

Conclusions

» We have proposed a new characterization method, simple but promising

» Current research topic in characterization

» Should lead to better understanding the vulnerabilities = help
developers to improve their products
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Conclusions

» We have proposed a new characterization method, simple but promising

» Current research topic in characterization

» Should lead to better understanding the vulnerabilities = help
developers to improve their products

Thank You! Questions?
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Analysis of overfitting

Loss for the best architecture (Exp.3)
Training losses in dotted lines, Validation losses in plain lines
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Figure: The loss during training.
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[llustration on simulated data

Description

Simulation on n = 4 bits.

One or several shares that leak in a Hamming weights model with white
Gaussian noise, mixed with fool points (same marginal pdf).

Training with a small Multi-Layer Perceptron with exhaustive data to guess the
xor of the shares.

Sensitivity map: peaks should be at [5]

Shape: (16000, 100), 0= 0.4, loss = 2.8138539791107178
0.0008 -
0.0007 -
0.0006 -
0.0005 -

0.0004 -

Gradient

0.0003 -

0.0002 -

0.0001 -

0.0000 -

100
Input coordinates: 100 random values, 1 informative components.

Figure: Average Gradient of the loss function w.r.t. the simulated traces.
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[llustration on simulated data

Description

Simulation on n = 4 bits.

One or several shares that leak in a Hamming weights model with white
Gaussian noise, mixed with fool points (same marginal pdf).

Training with a small Multi-Layer Perceptron with exhaustive data to guess the
xor of the shares.

Sensitivity map: peaks should be at [5, 44]
Shape: (25600, 100), 0 = 0.4, loss = 3.9360218048095703

0.00012 -
0.00010 -
0.00008 -
0.00006 -
0.00004 -
0.00002 -

100
Input coordinates: 100 random values, 2 informative components.

Figure: Average Gradient of the loss function w.r.t. the simulated traces.
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[llustration on simulated data

Description

Simulation on n = 4 bits.

One or several shares that leak in a Hamming weights model with white
Gaussian noise, mixed with fool points (same marginal pdf).

Training with a small Multi-Layer Perceptron with exhaustive data to guess the
xor of the shares.

Sensitivity map: peaks should be at [5, 44, 80]
Shape: (409600, 100), o= 0.1, loss = 3.9143667221069336

0.000006 -
0.000005 -
0.000004 -
0.000003 -
0.000002 -
0.000001 -
0 20 40 60 80 100
Input coordinates: 100 random values, 3 informative components.

Figure: Average Gradient of the loss function w.r.t. the simulated traces.
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Wait, this is not exactly what we were looking for !

We wanted V,F(x,8%)[z] but we got V,£(F(x,6%),z).

1. What is the link between the two terms?
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Wait, this is not exactly what we were looking for !

We wanted V,F(x,8%)[z] but we got V,£(F(x,6%),z).

1. What is the link between the two terms?
The loss gradient can be computed from the Jacobian matrix with the
chain rule for derivatives:

Vl(F(x,0),z) = Jr(x,0) Vyl(F(x,0),z2). (1)

2. Why not giving the Jacobian matrix directly?
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Wait, this is not exactly what we were looking for !

We wanted V,F(x,8%)[z] but we got V,£(F(x,6%),z).

1. What is the link between the two terms?
The loss gradient can be computed from the Jacobian matrix with the
chain rule for derivatives:

Vil(F(x,0),2) = Jr(x,0)" Vyl(F(x,0),2). (1)
2. Why not giving the Jacobian matrix directly?

Surprisingly, the Deep Learning frameworks compute the loss gradient
more efficiently. The Jacobian is not even explicitly computed !

3. Should we be concerned about that?
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Wait, this is not exactly what we were looking for !

We wanted V,F(x,8%)[z] but we got V,£(F(x,6%),z).

1. What is the link between the two terms?
The loss gradient can be computed from the Jacobian matrix with the
chain rule for derivatives:

Vl(F(x,0),z) = Jr(x,0) Vyl(F(x,0),z2). (1)

2. Why not giving the Jacobian matrix directly?
Surprisingly, the Deep Learning frameworks compute the loss gradient
more efficiently. The Jacobian is not even explicitly computed !

3. Should we be concerned about that?
No. Remind that Jr(x,0) is made with the V F(x,6%)[s],s € Z.
Furthermore, V¢(F(x, ), z) is actually proportional to the one-hot vector
encoding z. It follows that V.4(F(x,8),z) « ViF(x,6%)[z].

Remark: It is still possible to get the Jacobian matrix.
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The Jacobian matrix in practise
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Figure: The Jacobian matrix in Experiment 1
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