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Context

About me: PhD student, working on Statistical Learning applied to Side
Channel Analysis

Conceives a 
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Figure: French certification scheme
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Evaluating Side-Channel Vulnerabilities

Evaluating worst-case scenarios from a developer point of view.

Open samples

I Open samples are admitted for evaluation
I They are used to previously characterize the behaviour of the device ⇒

Profiling Attacks

Profiling: two steps

1. Characterization with statistical tools (SNR, T-Test, χ2, ...)
2. Profiling with Generative models: Template Attacks
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Evaluating worst-case scenarios from a developer point of view.

Open samples

I Open samples are admitted for evaluation
I They are used to previously characterize the behaviour of the device ⇒

Profiling Attacks

Profiling with Deep Learning: two steps

1. Characterization with statistical tools (SNR, T-Test, χ2, ...)
2. Profiling with Discriminative models: Convolutional Neural Networks
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Notations in Side-Channel Analysis

  

                                              Encryption Sensitive operation

               LOAD X ;       LOAD B ;          MV B ;             …                            

Plaintext P Secret K

Measure trace X

Z = C(P, K)
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Profiling Attacks

Profiling step

Follows Maximum Likelihood principles
Requires to know the probability distribution F ∗ , Pr[Z |X]
Reality: unknown for the evaluator/attacker. Estimation with parametric
models F (., θ∗)!

Estimator
F( . ; θ)

P(Z|X=x)

0% 20% 40% 60% 80% 100%

Z=0 Z=1
x
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Why Deep learning?

SCA suits the DL framework

I Profiling a target device ∼ training a DL model
I DL does not require too much prior knowledge (e.g. leakage model)
I DL shown to be robust against some counter-measures

New problematics

Deep Learning provides black-box models:

Estimator
F( . ; θ)

P(Z|X=x)

0% 20% 40% 60% 80% 100%
Z=0 Z=1

x

Lack of posterior knowledge about the learned leakage model: how did the
model learn?
Lack of trust on the Deep Learning tools: where did the model get the
information? Issue addressed in this talk!
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Friday, April 5th2019, COSADE, Darmstadt| Löıc Masure, Cécile Dumas, Emmanuel Prouff| 8/23



Gradient Visualization for General Characterization in
Profiling Attacks

Why Deep learning?

SCA suits the DL framework

I Profiling a target device ∼ training a DL model
I DL does not require too much prior knowledge (e.g. leakage model)
I DL shown to be robust against some counter-measures

New problematics

Deep Learning provides black-box models:

Estimator
F( . ; θ)

P(Z|X=x)

0% 20% 40% 60% 80% 100%
Z=0 Z=1

x

Lack of posterior knowledge about the learned leakage model: how did the
model learn?
Lack of trust on the Deep Learning tools: where did the model get the
information? Issue addressed in this talk!
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Our Contribution: the Gradient Visualization

I We propose a characterization technique based on a trained CNN

I Able to detect Points of Interest (PoIs) as long as the model has learned
something

I Already proposed in Image Recognition [SVZ13; Spr+14]

I Starts to be used in SCA [Tim19; HGG19]

Not at the state of the art in Image Recognition. So why such a choice for Side
Channel Analysis?
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Friday, April 5th2019, COSADE, Darmstadt| Löıc Masure, Cécile Dumas, Emmanuel Prouff| 10/23



Gradient Visualization for General Characterization in
Profiling Attacks

Our Contribution: the Gradient Visualization

I We propose a characterization technique based on a trained CNN

I Able to detect Points of Interest (PoIs) as long as the model has learned
something

I Already proposed in Image Recognition [SVZ13; Spr+14]

I Starts to be used in SCA [Tim19; HGG19]

Not at the state of the art in Image Recognition. So why such a choice for Side
Channel Analysis?
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Let us start with an ideal case

Ideal case: we know F ∗ = Pr[Z |X] (i.e. F ∗ : RD → P(Z) ⊂ [0, 1]|Z|)

An example
An explanation

I Assume the informative leakage is
very localized (few PoIs)
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Let us start with an ideal case

Ideal case: we know F ∗ = Pr[Z |X] (i.e. F ∗ : RD → P(Z) ⊂ [0, 1]|Z|)

An example

  

An explanation

I Assume the informative leakage is
very localized (few PoIs)

I Consider a new trace and its label
x, z

Friday, April 5th2019, COSADE, Darmstadt| Löıc Masure, Cécile Dumas, Emmanuel Prouff| 11/23



Gradient Visualization for General Characterization in
Profiling Attacks

Let us start with an ideal case

Ideal case: we know F ∗ = Pr[Z |X] (i.e. F ∗ : RD → P(Z) ⊂ [0, 1]|Z|)

An example

  

An explanation

I Assume the informative leakage is
very localized (few PoIs)

I t0 non informative:
x[t0] 7→ x[t0] + ε not sensitive

I In other words, t0 non informative
→ ∂
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F ∗(x)[z] ≈ 0
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What is the link with Deep learning?

We do not know F ∗, but we can replace it with a Deep Neural Net

Deep Neural Networks

Composition of simple operations (a.k.a layers), alternating between linear (λ)
and non-linear (σ) layers. Linear layers are parametrized by real values gathered
into a vector θ

Theorem (Universal Approximation [HSW90], informal)

Can we approximate F ∗ with F (., θ∗) with an arbitrary uniform precision?

Yes
And what about the derivatives of F ∗?
As well!
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How to find such an approximator?

F(.,θ*) 

x

Learning θ...

consist in minimizing a loss `(F (x, θ∗), z) by applying a Gradient
Descent.
∇θ`(F (x, θ∗), z) computed with the backprop algorithm.
Side effect: ∇x`(F (x, θ∗), z) is also computed for free !

Q: Wait a minute: is that really what we want?
We got ∇x`(F (x, θ∗), z), we wanted ∇xF (x, θ∗)[z].
A: Yes !
Both are equivalent.
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Concretely, how to implement this method?

Very straightforward in Pytorch [Noa]:

With Tensorflow:
tf.abs(tf.gradients(probas[:,Z],
X)).
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Application on experimental data

Description

ASCAD dataset [Pro+18]: 50, 000 traces, each of 700 points
Corresponds to the first AES round
Three cases studied:

1. No countermeasure: synchronized traces, no masking
2. Artificial random shift
3. Synchronized traces, boolean masking (unknown masks)

Trained model

CNN with a VGG-like architecture
Grid search of hyperparameters
Best model: minimal trace number when the guessing entropy reaches 2
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First experiment: no countermeasure

Average number of traces to recover the secret key: 3
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Figure: Gradient Visualization
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Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6
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Friday, April 5th2019, COSADE, Darmstadt| Löıc Masure, Cécile Dumas, Emmanuel Prouff| 18/23



Gradient Visualization for General Characterization in
Profiling Attacks

Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6
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Figure: Characterization for each trace
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Third experiment: with masking

Average number of traces to recover the secret key: ≈ 100
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Figure: Requires knowledge of the masks
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Be careful not to overfit !
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Figure: GV without overfitting
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Conclusions

I We have proposed a new characterization method, simple but promising

I Current research topic in characterization
I Should lead to better understanding the vulnerabilities =⇒ help

developers to improve their products

Thank You! Questions?
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Friday, April 5th2019, COSADE, Darmstadt| Löıc Masure, Cécile Dumas, Emmanuel Prouff| 23/23

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387


Gradient Visualization for General Characterization in
Profiling Attacks

Analysis of overfitting
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Illustration on simulated data

Description

Simulation on n = 4 bits.
One or several shares that leak in a Hamming weights model with white
Gaussian noise, mixed with fool points (same marginal pdf).
Training with a small Multi-Layer Perceptron with exhaustive data to guess the
xor of the shares.
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Figure: Average Gradient of the loss function w.r.t. the simulated traces.
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Friday, April 5th2019, COSADE, Darmstadt| Löıc Masure, Cécile Dumas, Emmanuel Prouff| 25/23



Gradient Visualization for General Characterization in
Profiling Attacks

Illustration on simulated data

Description

Simulation on n = 4 bits.
One or several shares that leak in a Hamming weights model with white
Gaussian noise, mixed with fool points (same marginal pdf).
Training with a small Multi-Layer Perceptron with exhaustive data to guess the
xor of the shares.

0 20 40 60 80 100
Input coordinates: 100 random values, 3 informative components.

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44, 80]
Shape: (409600, 100), =  0.1, loss = 3.9143667221069336

Figure: Average Gradient of the loss function w.r.t. the simulated traces.
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Wait, this is not exactly what we were looking for !

We wanted ∇xF (x, θ∗)[z] but we got ∇x`(F (x, θ∗), z).

1. What is the link between the two terms?

The loss gradient can be computed from the Jacobian matrix with the
chain rule for derivatives:

∇x`(F (x, θ), z) = JF (x, θ)T∇y`(F (x, θ), z). (1)

2. Why not giving the Jacobian matrix directly?
Surprisingly, the Deep Learning frameworks compute the loss gradient
more efficiently. The Jacobian is not even explicitly computed !

3. Should we be concerned about that?
No. Remind that JF (x, θ) is made with the ∇xF (x, θ∗)[s], s ∈ Z.
Furthermore, ∇y`(F (x, θ), z) is actually proportional to the one-hot vector
encoding z . It follows that ∇x`(F (x, θ), z) ∝ ∇xF (x, θ∗)[z].

Remark: It is still possible to get the Jacobian matrix.
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The Jacobian matrix in practise
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Figure: The Jacobian matrix in Experiment 1
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