Fast Analytical Rank Estimation

Liron David and Prof. Avishai Wool

School of Electrical Engineering
Tel-Aviv University

Our Goal

Given an implementation of a symmetric encryption algorithm and the secret key

Our goal is: \quad To estimate the strength of the secret key against side channel attacks

Side Channel Attack

Secret Key

[^0]
Side Channel Attack

Divide-and-Conquer
The attacker reveals a small part of bits each time

- Denoted by subkeys

Side Channel Attack

Side Channel Attack

Secret Key

> We sort the subkeys according to their probabilities in decreasing order...

Side Channel Attack

Secret Key

Sorted subkeys in decreasing order of probabilites

00010100	0.0010
10110111	0.005
11011011	0.005
01000011	0.0045
01110000	0.0043
11011010	0.003
10101110	0.003
01001111	0.002
10100110	0.0015

00000000	0.000001
11111111	0.000001

Side Channel Attack

Secret Key

Sorted subkeys in decreasing order of probabilites

| $\$ \% \$ \# @!@ \#$ |
| :--- | :---: |$|$| 00010100 | 0.0010 |
| :--- | :--- |
| 10110111 | 0.005 |
| 11011011 | 0.005 |
| 01000011 | 0.0045 |
| 01110000 | 0.0043 |
| 11011010 | 0.003 |
| 10101110 | 0.003 |
| 01001111 | 0.002 |
| 10100110 | 0.0015 |

00000000	0.000001			
11111111	0.000001	\quad	00000000	0.000001
:---	:---			
11111111	0.000001			

Side Channel Attack

- d independent subkey spaces $\left(\mathrm{K}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}\right)$ each of size N
- sorted in decreasing order of proabilities.
$\left(P_{1}, K_{1}\right) \quad\left(P_{2}, K_{2}\right) \quad\left(P_{3}, K_{3}\right) \quad \ldots \quad\left(P_{d}, K_{d}\right)$

Side Channel Attack

$$
\left(P_{1}, K_{1}\right) \quad\left(P_{2}, K_{2}\right) \quad\left(P_{3}, K_{3}\right) \quad \ldots \quad\left(P_{d}, K_{d}\right)
$$

- The attacker goes over the full keys
- in sorted order from the most likely to the least,
- till he reaches the correct key.

The probability of a full key is defined as the product of its subkey's probabilities.
$\left(\mathrm{P}_{1 \ldots \mathrm{~d}}, \mathrm{~K}_{1 . \ldots \mathrm{d}}\right)$

Side Channel Attack

$$
\left(P_{1}, K_{1}\right) \quad\left(P_{2}, K_{2}\right) \quad\left(P_{3}, K_{3}\right) \quad \ldots \quad\left(P_{d}, K_{d}\right)
$$

An important question is:
How many full keys the attacker needs to try before he reaches the correct key.

This allows estimating the strength of the chosen secret key after an attack has been performed.

Side Channel Attack

$$
\left(P_{1}, K_{1}\right) \quad\left(P_{2}, K_{2}\right) \quad\left(P_{3}, K_{3}\right) \quad \ldots \quad\left(P_{d}, K_{d}\right)
$$

So assume we know

- The correct key \mathbf{k}^{*} and its probability p*
- The \mathbf{d} subkey spaces $\left(\mathrm{K}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}\right)$

The goal:
to estimate the number of full keys with probability higher than p^{*}

This is $\operatorname{rank}\left(\mathrm{k}^{*}\right)$
$\left(\mathrm{P}_{1 \ldots \mathrm{~d}}, \mathrm{~K}_{1 . . \mathrm{d}}\right)$

Side Channel Attack

$$
\left(P_{1}, K_{1}\right) \quad\left(P_{2}, K_{2}\right) \quad\left(P_{3}, K_{3}\right) \quad \ldots \quad\left(P_{d}, K_{d}\right)
$$

- The optimal solution
- enumerates and counts the full keys in optimal-order
- till reaches to k^{*}

$\left(\mathrm{P}_{1 \ldots \mathrm{~d}}, \mathrm{~K}_{1 . . \mathrm{d}}\right)$

Side Channel Attack

$$
\left(P_{1}, K_{1}\right) \quad\left(P_{2}, K_{2}\right) \quad\left(P_{3}, K_{3}\right) \quad \ldots \quad\left(P_{d}, K_{d}\right)
$$

- However, key space size is 2^{128}
- Enumerating the whole key space in optimal-order is impossible
- Hence, estimating a rank without
 enumeration is of great interest.
$\left(P_{1 \ldots d}, K_{1 \ldots d}\right)$

Our Rank Estimation: Motivation for d=2

Our Rank Estimation: Motivation for $\mathrm{d}=2$

Motivation: $d=2$

$$
\forall x P_{1}[x] \leq f_{1}(x) \quad f_{2} \quad \forall x P_{2}[x] \leq f_{2}(x)
$$

$\forall x, y \leq N$
$P_{1}[x] \cdot P_{2}[y] \leq f_{1}(x) \cdot f_{2}(y)$

$$
p^{*} \leq P_{1}[x] \cdot P_{2}[y] \Rightarrow p^{*} \leq f_{1}(x) \cdot f_{2}(y)
$$

Motivation: $d=2$

$$
f_{1} \quad \forall x P_{1}[x] \leq f_{1}(x) \quad f_{2} \quad \forall x P_{2}[x] \leq f_{2}(x)
$$

P_{2}

$$
\forall x, y \leq N
$$

$$
P_{1}[x] \cdot P_{2}[y] \leq f_{1}(x) \cdot f_{2}(y)
$$

$$
\forall x, y \leq N
$$

$$
p^{*} \leq P_{1}[x] \cdot P_{2}[y] \Rightarrow p^{*} \leq f_{1}(x) \cdot f_{2}(y)
$$

The number of (x, y) s.t

Motivation: $\mathrm{d}=2 \quad f_{1} \quad \forall x P_{1}[x] \leq f_{1}(x) \quad f_{2} \quad \forall x P_{2}[x] \leq f_{2}(x)$

$\forall x, y \leq N$	P_{1}
$P_{1}[x] \cdot P_{2}[y] \leq f_{1}(x) \cdot f_{2}(y)$	$P^{*} \leq P_{1}[x] \cdot P_{2}[y] \Rightarrow p^{*} \leq f_{1}(x) \cdot f_{2}(y)$

The number of (x, y) s.t

\leq| The number of (x, y) s.t |
| :---: |
| $p^{*} \leq f_{1}(x) \cdot f_{2}(y)$ |

$$
\operatorname{rank}\left(k^{*}\right) \leq \int_{\substack{0 \\ f_{1}(x) \cdot f_{2}(y) \geq p^{*}}}^{N} 1 d x d y
$$

Instantiating the framework

For f we select the Pareto function:

$$
f(x)=\frac{a}{x^{\alpha}}
$$

- Long tail
- Easy to calculate mutiple integral

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
Goal: To find a tight Pareto upper bound for P

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
Goal: To find a tight Pareto upper bound for P
We choose an upper bound \boldsymbol{f} that anchors at two indexes,
i.e., there exists two indexes l, r s.t

$$
f(l)=P[l], f(r)=P[r]
$$

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
there exist $\boldsymbol{m} \ll \boldsymbol{N}$ indexes $\boldsymbol{t}_{\boldsymbol{1}}, \ldots, \boldsymbol{t}_{\boldsymbol{m}}$ s.t
Every Pareto upper bound function of \boldsymbol{P} that is anchored at some $l<r$ obeys $l=t_{j}$ and $r=t_{j+1}$ for $1 \leq j<m$

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
there exist $\boldsymbol{m} \ll \boldsymbol{N}$ indexes $\boldsymbol{t}_{\boldsymbol{1}}, \ldots, \boldsymbol{t}_{\boldsymbol{m}}$ s.t
Every Pareto upper bound function of \boldsymbol{P} that is anchored at some $l<r$ obeys $l=t_{j}$ and $r=t_{j+1}$ for $1 \leq j<m$

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
there exist $\boldsymbol{m} \ll \boldsymbol{N}$ indexes $\boldsymbol{t}_{\boldsymbol{1}}, \ldots, \boldsymbol{t}_{\boldsymbol{m}}$ s.t
Every Pareto upper bound function of \boldsymbol{P} that is anchored at some $l<r$ obeys $l=t_{j}$ and $r=t_{j+1}$ for $1 \leq j<m$

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
there exist $\boldsymbol{m} \ll \boldsymbol{N}$ indexes $\boldsymbol{t}_{\boldsymbol{1}}, \ldots, \boldsymbol{t}_{\boldsymbol{m}}$ s.t
Every Pareto upper bound function of \boldsymbol{P} that is anchored at some $l<r$ obeys $l=t_{j}$ and $r=t_{j+1}$ for $1 \leq j<m$

Choosing the best Pareto upper bound

Given a non-increasing probability distribution P
there exist $\boldsymbol{m} \ll \boldsymbol{N}$ indexes $\boldsymbol{t}_{\boldsymbol{1}}, \ldots, \boldsymbol{t}_{\boldsymbol{m}}$ s.t
Every Pareto upper bound function of \boldsymbol{P} that is anchored at some $l<r$ obeys $l=t_{j}$ and $r=t_{j+1}$ for $1 \leq j<m$

Choosing the best Pareto upper bound

The asymptotic running time of finding all the Pareto upper bounds of a given P is $\boldsymbol{O}(\boldsymbol{m N})$.

- Since typically $\boldsymbol{m} \ll \boldsymbol{N}$ the algorithm is almost linear in \boldsymbol{N} and very quick in practice.
- Furthermore, our implementation is very efficient: it allows skipping over hundreds of not relevant candidates which dramaticly impacts in practice.

Choosing the best Pareto upper bound

After finding multiple candidates for Pareto upper bound of a given P,

Choosing the best Pareto upper bound

We need to select the 'best' function which lead to a tight bound.

Choosing the best Pareto upper bound

We chose the following criteria:

Given

- P - a non-increasing subkey probability distribution
- k - the index of the correct subkey in P

Choose the Pareto upper bound function f s.t $f(k)$ is the closest to $P[k]$

Choosing the best Pareto upper bound

$f(k)$ is the closest to $P\lceil k\rceil$

Choosing the best Pareto upper bound

$f(k)$ is the closest to $P\lceil k\rceil$

Estimating the Volume for $\mathrm{d} \geq 2$

After we find the 'best' Pareto upper bound function f_{i} for each P_{i}

$$
\forall x \quad P_{i}[x] \leq f_{i}(x)=\frac{a_{i}}{x^{\alpha_{i}}}
$$

We need to calculate the number of $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ s.t.
$f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \cdot \ldots \cdot f_{d}\left(x_{d}\right) \geq p^{*}$
using the multiple integral: $\quad \int_{0}^{N} \int_{0}^{N} \ldots \int_{0}^{N} 1 d x_{1} d x_{2} \ldots d x_{d}$

$$
f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \cdot \ldots \cdot f_{d}\left(x_{d}\right) \geq p^{*}
$$

Estimating the Volume for $\mathrm{d} \geq 2$

We solve the multiple integral: $\quad \int_{0}^{N} \int_{0}^{N} \ldots \int_{0}^{N} 1 d x_{1} d x_{2} \ldots d x_{d}$

$$
f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \cdot \ldots \cdot f_{d}\left(x_{d}\right) \geq p^{*}
$$

using the Pareto upper bound functions $f_{i}(x)=\frac{a_{i}}{x^{\alpha_{i}}}$

We get the following closed formula:

$$
\operatorname{rank}\left(p^{*}\right) \leq \sum_{i=1}^{d}\left[\left(\frac{1}{p^{*}} \cdot \prod_{j=1}^{d} a_{j}\right)^{\frac{1}{\alpha_{i}}} \cdot \prod_{j=1, j \neq i}^{d}\left(\frac{\alpha_{i}}{\alpha_{i}-\alpha_{j}} \cdot N^{\frac{\alpha_{i}-\alpha_{j}}{\alpha_{i}}}\right)\right]
$$

PRank: The Pareto Rank Estimation Algorithm

Given:

- d probability distiburions $P_{1}, . ., P_{d}$
- The correct key $k^{*}=\left(k_{1}, \ldots, k_{d}\right)$ and its probability p^{*}

Prank Algorithm:

for $i=1$ to d :
$a_{i}, \alpha_{i} \leftarrow$ upper bound P_{i} by a Pareto upper bound function
compute the closed formula: $\quad \sum_{i=1}^{d}\left[\left(\frac{1}{p^{*}} \cdot \prod_{j=1}^{d} a_{j}\right)^{\frac{1}{\alpha_{i}}} \cdot \prod_{j=1, j \neq i}^{d}\left(\frac{\alpha_{i}}{\alpha_{i}-\alpha_{j}} \cdot N^{\frac{\alpha_{i}-\alpha_{j}}{\alpha_{i}}}\right)\right]$

Theoretical Worst-case Performance

for $i=1$ to d :
Prank Algorithm
$a_{i}, \alpha_{i} \leftarrow$ upper bound P_{i} by a Pareto upper bound function
compute the closed formula:

$$
\sum_{i=1}^{a}\left[\left(\frac{1}{p^{*}} \cdot \prod_{j=1}^{a} a_{j} a^{\frac{1}{\alpha_{i}}} \cdot \prod_{j=1, j=i}^{d}\left(\frac{\alpha_{i}}{\alpha_{i}-\alpha_{j}} \cdot N^{\frac{\alpha_{1}-\alpha_{j}}{a_{i}}}\right)\right]\right.
$$

Space Complexity:

Only needs to keep a_{i}, α_{i} for every $1 \leq i \leq d$
Therefore $\boldsymbol{O}(\boldsymbol{d})$.

Theoretical Worst-case Performance

for $i=1$ to d :
Prank Algorithm
$a_{i}, \alpha_{i} \leftarrow$ upper bound P_{i} by a Pareto upper bound function
compute the closed formula:

$$
\sum_{i=1}^{d}\left[\left(\frac{1}{p^{*}} \cdot \prod_{j=1}^{d} a_{j}\right)^{\frac{1}{\alpha_{i}}} \cdot \prod_{j=1, j+i}^{d}\left(\frac{\alpha_{i}}{\alpha_{i}-\alpha_{j}} \cdot N^{\frac{q_{i}-\alpha_{j}}{a_{i}}}\right)\right]
$$

Running Time:

Calculating the closed formula: $\boldsymbol{O}\left(\boldsymbol{d}^{2}\right)$
d additions each consists of d multiplications and d real-value power.

Theoretical Worst-case Performance

for $i=1$ to d :
Prank Algorithm
$a_{i}, \alpha_{i} \leftarrow$ upper bound P_{i} by a Pareto upper bound function
compute the closed formula:

$$
\sum_{i=1}^{d}\left[\left(\frac{1}{p^{*}} \cdot \prod_{j=1}^{d} a_{j}\right)^{\frac{1}{\alpha_{i}}} \cdot \prod_{j=1, j+i}^{d}\left(\frac{\alpha_{i}}{\alpha_{i}-\alpha_{j}} \cdot N^{\frac{q_{i}-\alpha_{j}}{a_{i}}}\right)\right]
$$

Running Time:

Finding the best Pareto upper bound for each P_{i} is $\boldsymbol{O}\left(\boldsymbol{m}_{\boldsymbol{i}} \cdot \boldsymbol{N}\right)$.
Since typically \forall i $m_{i} \ll N$, the algorithm is almost linear in $\boldsymbol{d} \boldsymbol{N}$ and very quick in practice.

Performance Evaluation

- We compared our new PRank algorithm with the histogram algorithm of Glowacz et al. [GGPSS15].
- We implemented both in Matlab.
- Our PRank code is available in gitHub.

Performance Evaluation

- We run PRank algorithm on 611 traces gathered from a specific SCA.
- The SCA was against AES with $\mathbf{1 2 8}$-bits keys.
- Each set in the corpus consists of the correct secret key and 16 distributions, one per subkey.
- The distributions are sorted in non-increasing order of probability, each of length $\mathbf{2}^{\mathbf{8}}$.

Performance Evaluation

- We measured the time and the accuracy for each trace using PRank and the histograms rank estimation, in two different configurations.
- $d=16$ and $n=2^{8}$
- $d=8$ and $n=2^{16}$

We used the histogram rank as the \mathbf{x}-axis in our resulting graphs.

Space Utilization

PRank Histograms

	$\mathrm{B}=5 \mathrm{~K}$		$\mathrm{~B}=50 \mathrm{~K}$	
$d=8$	24 bytes	80 KB	24 bytes	
800 KB				
$d=16$	48 bytes	160 KB	48 bytes	

The memory consumption of PRank algorithm
is drastically lower than the histogram space consumption.

The PRank space consumption is trivial 3d
The histogram space requirements are around $2 B d$

Runtime Analysis

The PRank running time consists of:

- finding the Pareto upper bound function of each probability distribution
- calculating the closed formula given the secret key.

The histogram running time consists of:

- converting each probability distribution into a histogram
- finding the sum of the corresponding bins given the secret key.

Runtime Analysis logscale

PRank, for both $\mathrm{d}=8$ and $\mathrm{d}=16$, typically
takes only a few milliseconds to complete
and runs faster than the Histograms in its 4 configurations.

Runtime Analysis log scale

Prank with $\mathbf{d = 1 6}$ runs faster than PRank with $\mathrm{d}=8$
since the length \mathbf{N} of each distribution is shorter.

Bound Tightness

The Figure illustrates the PRank upper bound with $d=16, d=8$ and the histogram rank, all in number of bits $(\log 2)$.
x-axis is the number of bits of histogram rank, hence its curve is a straight line.

PRank with d=8 PRank with d=16

The figure clearly shows that it is advantageous to reduce the dimension d.

Bound Tightness

The accuracy of PRank's estimation is quite good:
for ranks between $2^{80}-2^{100}$: The median PRank bound is less than $\mathbf{1 0}$ bits above the histogram rank.

Bound Tightness

The accuracy of PRank's estimation is quite good:
for high ranks above 2^{100} : The median PRank bound is less than 4 bits more.

PRank with $\mathrm{d}=8 \quad$ PRank with $\mathrm{d}=16$

Bound Tightness

The accuracy of PRank's estimation is quite good:

For small ranks, around 2^{30} :
PRank gave a bound which is roughly 20 bits greater than that of the histogram.

However such ranks are within reach of key enumeration so rank estimation is not particularly
 interesting there.

Bound Tightness

We chose Pareto upper bound functions.
This choise clearly effects the received accuracy.

However,

- one could employ our framework
- with other classes of upper-bound functions
- and possibly achieve even better results.

We leave this direction for future research.

Conclusions

- In this paper we proposed a new framework for rank estimation, that is conceptually simple, faster and use less memory than previous proposals.
- Our main idea is to bound each subkey distribution by an analytical function, and then estimate the rank by a closed formula.
- To instantiate the framework we use Pareto functions to upperbound the empirical distributions.

Conclusions

- We fully characterized such upper-bounding functions and developed an efficient algorithm to find them.
- We then used Pareto functions to develop a new explicit closed formula upper bound on the rank of a given key.
- Combined with the algorithm to find the upper-bounding Pareto functions, we obtained a rank upper-bound estimation algorithm we call PRank.

[^0]: 128 bits
 \$\%\$\#@!@\#\$\%^\&*\&^\%\$\%^\&\%^\%\#@\$\%^\&\$\#@\$\%^\&\#@!\#\$!~!\#\%\&\$*\&!^\$\%^\&\$\#@\$\%^\&\#!\#\$!~!

