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CONTEXT

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson 

and van Oorschot

White-box cryptography is about implementations of cryptographic algorithms 

to be executed in an environment completely under the adversary control, 

i.e.: the white-box model

The white-box model is the scenario closest to the real-world capturing the 

idea of an adversary with full knowledge and full control of the targeted 

device
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MOTIVATION

Protect illegitimate access to copyrighted content from unauthorized users 

(DRM)

Applications managing sensible and personal data run on untrusted devices 

like smartphone and portable devices (smartwatches, …)

Firmware with high intellectual property value runs on non-secure hardware 

(IoT)

Protect access, banking and transit assets in software-only representations 

(HCE, CBP)
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WHITE-BOX IMPLEMENTATION

Chow et al. introduced the first design of white-box implementations for the 

DES and AES ciphers:

1. Represent the algorithm as a network of look-up tables

2. Randomize tables and their inputs/outputs with random encodings

3. Glue the white-box implementation to the surrounding software with 

random external encodings

Several designs have been published with approaches similar to this 

framework



04/04/2019, COSADE 2019, Darmstadt | M. Zeyad, H. Maghrebi, D. Alessio, B. Batteux 7

CHOW ET AL.’S AES ORIGINAL DESIGN

A cipher state row is computed as:

that can be rearranged as follow:

𝑦0, 𝑦1, 𝑦2, 𝑦3 = 𝑇𝑦𝑜 𝑥0 ⊕𝑇𝑦5 𝑥5 ⊕𝑇𝑦10 𝑥10 ⊕𝑇𝑦15 𝑥15

with tables 𝑇𝑖 ⋅ : 0…28 → 0…232 and ⊕: 0…28 → 0…24

𝑦0, 𝑦1, 𝑦2, 𝑦3 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⊗

𝑆 𝑥0 ⊕𝑘0
𝑆 𝑥5 ⊕𝑘5
𝑆 𝑥10 ⊕𝑘10
𝑆 𝑥15 ⊕𝑘15
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Pictures from Muir “A Tutorial on White-box AES” (ePrint 2013, ia.cr/2013/104)
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ATTACKS ON WHITE-BOX IMPLEMENTATIONS

Attacks can be divided into two families:

• Differential and algebraic cryptanalysis:

• Recover the encodings, invert them and recover the key

• BGE attack (Billet et al. SAC04)

• BGE attack improved by Lepoint et al. at SAC13

• Collisions attack (Lepoint et al. at SAC13)

• Physical attacks:

• Differential computational analysis, fault injection analysis

• Fault attack (Sanfelix et al. BlackHat15)

• Differential Computational attack (Bos et al. CHES16)
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STATISTICAL BUCKETING ATTACK

Cryptanalysis introduced by Chow et al. on the naked version of WB DES:

• Chosen-plaintext attack

• Key-recovery 

Requirements:

• Access to some intermediate values

• Access to an encryption (or decryption) oracle

Output: 

• 48 bits of the key (+ 8 bits to be brute-forced)
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STATISTICAL BUCKETING ATTACK ALGORITHM

1. Select 𝑖𝑡ℎ Sbox on 1st round 𝑆𝑖
1

2. Guess 6 bits of the first round key and generate 26 possible plaintexts 𝑚

i. Left-side of the message after permutation 𝑃 are constant

ii. Remaining 26 bits of right-side are chosen at random
3. Select one bucketing bit 𝑏 of 𝑆𝑖

1 ⋅ and divide plaintexts into two sets:

𝐼𝑏 = 𝑚 𝑏 ← 𝑆𝑖
1 𝐸 𝑚 ⊕ 𝑘 } with 𝑏 = 0, 1

4. Select z𝑡ℎ Tbox on 2nd round 𝑇𝑧
2 encoding the bucketing bit and group its input in two sets 𝑉𝑏 =

𝑖𝑛𝑝𝑢𝑡𝑇𝑧2 Ib with 𝑏 = 0, 1

5. Check if 𝑉0 ∩ 𝑉1 = ∅ to confirm the 6-bit key guess, else reject

6. Repeat for 𝑆𝑗
1 with 𝑗 = 0, … , 8
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IS IT A GOOD DISTINGUISHER

If the key guess is correct, 𝑉0 ∩ 𝑉1 = ∅ because their elements are different at 

least on bit 𝑏.

So: 𝑘 is correct ⟹ 𝑉0 ∩ 𝑉1 = ∅

Are there false-positives? 
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EFFECTIVENESS OF THE SB DISTINGUISHER (DES)

Evolution of the probability 

that for an incorrect key guess 

the sets 𝑉0 and 𝑉1 are disjoint 

according to an increasing 

number of plaintexts
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OUR CONTRIBUTION

• Extension of the Statistical Bucketing Attack to AES

• New automated key-recovery computational attack based on an algebraic 

cryptanalysis, the Statistical Bucketing Attack

• Validate our proposal through practical experiments

• Compare the efficiency of our attack w.r.t. the existing computational 

attacks
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OUR EXTENSION TO AES

As is, Statistical Bucketing Distinguisher cannot work for AES:

𝐼0 = 𝑋𝑖 0 ← 𝑆 𝑋𝑖 ⊕𝑘 }, 𝐼1 = 𝑌𝑗 1 ← 𝑆(𝑌𝑗 ⊕𝑘)}

Given a Tbox 𝑇𝑧
2 we define

𝑉0 = 𝑖𝑛𝑝𝑢𝑡𝑇𝑧2 𝑋𝑖 𝑋𝑖∈𝐼0
, 𝑉1 = 𝑖𝑛𝑝𝑢𝑡𝑇𝑧2 𝑌𝑗 𝑌𝑗∈𝐼1

And as both encodings and AES round function are bijections:

𝑋𝑖 ≠ 𝑌𝑗 ⟺ 𝐸 𝐿 𝑆 𝑋𝑖 ⊕𝑘 ≠ 𝐸 𝐿 𝑆 𝑌𝑖 ⊕𝑘 ∀𝑘

for 𝑖, 𝑗 = 0,… , 27 − 1 ⇒ 𝑉0 ∩ 𝑉1 = ∅
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OUR EXTENSION TO AES

As is, SBA cannot work for AES because encodings and AES round function 

are bijections:

𝑋𝑖 ≠ 𝑌𝑗 ⟺ 𝐸 𝐿 𝑆 𝑋𝑖 ⊕𝑘 ≠ 𝐸 𝐿 𝑆 𝑌𝑖 ⊕𝑘 ∀𝑘

for 𝑖, 𝑗 = 0,… , 27 − 1 ⇒ 𝑉0 ∩ 𝑉1 = ∅

IDEA
“… replace the AES Sbox with a non bijective one”

𝑆′: 𝐺𝐹 28 → 𝐺𝐹 24

𝑥 ↦ 𝐴𝐸𝑆𝑆𝑏𝑜𝑥 𝑥 & 0𝑥𝑓

Assumption: we focused on nibble-encoded white-box implementations
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STATISTICAL BUCKETING ALGORITHM (AES)

1. Select 𝑖𝑡ℎ Sbox on 1st round 𝑆𝑖
1

2. Guess 8 bits of the first round key and compute 28 possible plaintexts 𝑚

i. 𝑖𝑡ℎ byte in {0,… , 28}

ii. Remaining 15 bytes are constant

3. Select two distinct bucketing nibbles 𝑑0 and 𝑑1 and divide plaintexts into 

two sets:

𝐼𝑏 = 𝑚 𝑑𝑏 ← 𝑆′𝑖
1 𝑚⊕ 𝑘 } with 𝑏 = 0, 1

4. Select z𝑡ℎ Tbox on 2nd round 𝑇𝑧
2 encoding the bucketing nibble and group its input in two sets 

𝑉𝑏 = 𝑖𝑛𝑝𝑢𝑡𝑇𝑧2 Ib with 𝑏 = 0, 1

5. Check if 𝑉0 ∩ 𝑉1 = ∅ to confirm the 8-bit key guess, else reject

6. Repeat for 𝑆𝑗
1 with 𝑗 = 0,… , 16
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EFFECTIVENESS OF THE SBA DISTINGUISHER (AES)

Evolution of the probability that 

for an incorrect key guess the 

sets 𝑉0 and 𝑉1 are disjoint 

according to an increasing 

number of plaintexts
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BUCKETING COMPUTATIONAL ATTACK

Statistical bucketing attack is hard because of software security measures

⇓
Exploit computational execution traces

• Instead of targeting Tbox inputs, we exploit the execution traces

• 𝑽𝟎 and 𝑽𝟏 are seen as (𝑚, 𝑛)-matrices 

• Bucketing distinguisher applied on each column: 

1. Count  # 𝑗 𝑽𝟎 𝑗 ∩ 𝑽𝟏 𝑗 = ∅ for 𝑗 ∈ 𝑂, 𝑛 }

2. Output the key maximizing the cardinality
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ALGORITHM (NIBBLE ENCODED)

Precomputation: 

i. generate 28 messages targeting a Sbox

ii. chose two values 0 ≤ 𝑑0 < 𝑑1 ≤ 15 (bucketing nibbles)

iii. for each key guess 𝑘: 

group messages in sets 𝐼𝑏 = 𝑚 𝑑𝑏 ← 𝑆′𝑖
1 𝑚⊕ 𝑘 } with 𝑏 = 0, 1

Output: 256 pairs of sets 𝐼0,𝑘 , 𝐼1,𝑘 where each set contains 16 messages
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1 𝑚⊕ 𝑘 } with 𝑏 = 0, 1

Output: 256 pairs of sets 𝐼0,𝑘 , 𝐼1,𝑘 where each set contains 16 messages

Acquisition: 

i. acquire a set of 256 traces 𝑇 = (𝑡𝑖,𝑗)0≤𝑖≤255
0≤𝑗≤𝑛

(encryption of 𝑚 ∈ 𝐼 of n

samples)
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ALGORITHM (NIBBLE ENCODED)

Key recovery: 

i. initialize vector 𝑅 = 0,… , 0 with 256 zeroes

ii. for each key guess 𝑘:

group traces in two matrices 𝑽𝟎,𝒌 and 𝑽𝟏,𝒌 according to sets 𝐼0,𝑘 , 𝐼1,𝑘
for each sample 0 ≤ 𝑗 ≤ 𝑛:

if 𝑽𝟎,𝒌[𝑗] ∩ 𝑽𝟏,𝒌[𝑗] = ∅:

𝑅 𝑘 = 𝑅 𝑘 + 1

iii. output 𝑘 s.t. 𝑅 𝑘 = max 𝑅 𝑗 𝑗
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COMPARISON WITH OTHER ATTACKS

BCA can be seen as the chosen-plaintext counterpart of DPA: a key portion 

guess is confirmed or rejected by looking at some sets intersection, it is 

effective on software implementations because traces are noise-free

BCA is somewhat similar to ZDE, both uses sets of well-chosen plaintexts

and perform a statistical analysis on the intermediate values

BCA is similar to the collision-attack, both look for collisions on internal 

encoded values, BCA imposes constraints on the input sets while collision-

attacks verifies them later



1. Context and Motivation

2. Statistical Bucketing attack

3. Computational Bucketing attack

4. Comparison with other similar attacks

5. Experimental results

6. Conclusions

AGENDA

04/04/2019, COSADE 2019, Darmstadt | M. Zeyad, H. Maghrebi, D. Alessio, B. Batteux 30



04/04/2019, COSADE 2019, Darmstadt | M. Zeyad, H. Maghrebi, D. Alessio, B. Batteux 31

EXPERIMENTAL RESULTS

We run experiments on 4 public white-box implementations:

• DES: Wyseur 2007 challenge

• AES: ph4r05 implementing dual-ciphers variant by Karroumi

• AES: CHES 2016 challenge

• AES: Lee et al.’s implementation (CASE 1)

All these challenges are based on nibble-encoded designs

Our tool is available on Github (https://github.com/Bucketing/BCA-attack) 

https://github.com/Bucketing/BCA-attack
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EXPERIMENTAL RESULTS 

Note: We didn’t run the ZDE attack because of the high number of required traces (500 × 217 to 

recover two bytes of the key in the CHES’16 challenge)
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COMPARISONS

• On CHES’16 running DCA is quite complicated because of the 

countermeasures and one needs to run DCA twice to recover the key; 

while BCA recovers the key faster

• On Lee et al.’s design DCA does not work, while BCA is efficient

On the other hand:

• On not protected implementations DCA is more efficient to fully recover 

the key (Wyseur and ph4r05 challenges)
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COUNTERMEASURES

The Computational Bucketing Distinguisher is highly dependent on traces 

synchronization, therefore to protect the implementation one could:

• introduce misalignment on the execution traces (introducing dummy 

computations or shuffling the order of the operations)

• introduce dummy encryptions with dummy non-constant keys 

• implement a proper masking 

Some countermeasures would probably be defeated by reverse engineering 

on the targeted implementation
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CONCLUSIONS

• Presented a new computational analysis method to break white-box 

implementations

• Proposed a new key distinguisher for automated computational attack

• Applied this cryptanalysis technique to AES

• Facing an unprotected implementation, DCA remains the most effective attack, our 

proposal becomes an good alternative facing an implementation with some 

countermeasures beating the complexity of LDA and HO-DCA

As future work we plan to expand the Computational Bucketing Distinguisher to an 

higher order context and to apply the attack to more complex implementations
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